Model-based detector and extraction of weak signal frequencies from chaotic data.
نویسندگان
چکیده
Detecting a weak signal from chaotic time series is of general interest in science and engineering. In this work we introduce and investigate a signal detection algorithm for which chaos theory, nonlinear dynamical reconstruction techniques, neural networks, and time-frequency analysis are put together in a synergistic manner. By applying the scheme to numerical simulation and different experimental measurement data sets (Henon map, chaotic circuit, and NH(3) laser data sets), we demonstrate that weak signals hidden beneath the noise floor can be detected by using a model-based detector. Particularly, the signal frequencies can be extracted accurately in the time-frequency space. By comparing the model-based method with the standard denoising wavelet technique as well as supervised principal components analysis detector, we further show that the nonlinear dynamics and neural network-based approach performs better in extracting frequencies of weak signals hidden in chaotic time series.
منابع مشابه
Two Novel Chaos-Based Algorithms for Image and Video Watermarking
In this paper we introduce two innovative image and video watermarking algorithms. The paper’s main emphasis is on the use of chaotic maps to boost the algorithms’ security and resistance against attacks. By encrypting the watermark information in a one dimensional chaotic map, we make the extraction of watermark for potential attackers very hard. In another approach, we select embedding po...
متن کاملAttractor Based Analysis of Centrally Cracked Plate Subjected to Chaotic Excitation
The presence of part-through cracks with limited length is one of the prevalent defects in the plate structures. Due to the slight effect of this type of damages on the frequency response of the plates, conventional vibration-based damage assessment could be a challenging task. In this study for the first time, a recently developed state-space method which is based on the chaotic excitation is ...
متن کاملDetection of Signals from Noisy Chaotic Interference
On the basis of nonlinear dynamical modeling we investigate a chaos-based detector, which allows the extraction of signal frequencies in noisy chaotic interference.The detection scheme is tested by using both computer-generated chaotic data and real-life Lorenz-Sten£o (LS) chaotic circuit data respectively. The performance analysis demonstrates that signals hidden beneath the chaotic ambient no...
متن کاملA chaos-based video watermarking algorithm
The intriguing characteristics of chaotic maps have prompted researchers to use these sequences in watermarking systems to good effect. In this paper we aim to use a tent map to encrypt the binary logo to achieve a like-noise signal. This approach makes extraction of the watermark signal by potential attacker very hard. Embedding locations are selected based on certain principles. Experimental ...
متن کاملFeature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chaos
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2008